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Nonlinear optical effects are remarkable physical phenomena that can occur when a high-intensity
light beam propagates through an optical medium [1]. If the pump beam is intense enough and the
medium exhibits the suitable nonlinear behavior, the typical properties of the medium (absorption,
refractive index) can alter because of the input beam. Unlike the linear propagation of light where the
spectral and spatial components of light do not affect each other in a medium, the nonlinear interaction
of light with matter gives rise to complex coupling between the light components through the medium
[2]. These effects have been very often regarded as detrimental to fiber-based optical communication
systems [3]. However, they also offer new and exciting potential applications, such as devices in
which light can be controlled by light [4]. Due to their strong light confinement capabilities, optical
fibers have been early recognized as an ideal medium to exploit the nonlinear effects for all-optical
processing applications in telecommunication and fiber laser industries [5]. This research field has
recently been dramatically stimulated by the development of a new generation of highly nonlinear
optical fibers which has an array of tiny holes running through the whole length of the fiber. These
so-called photonic crystal or microstructured fibers allow conversion of a single colour laser beam
into a white light supercontinuum spanning two octaves in frequency [6] (i.e., a laser rainbow
extending from the ultra-violet well into the infra-red as shown in Figure 3.1). This new light source
has revolutionized optical metrology, making absolute measurements of optical frequencies with
unprecedented accuracy, and optical coherence tomography (OCT) with enhanced resolution.

This course is intended to provide an overview of nonlinear fiber optics in a way that is simultaneously
accessible and technically comprehensive. First, we will describe some basic concepts of nonlinear
propagation in dielectrics, so as to understand the origin of the main third-order nonlinear effects in
fused silica, namely the optical Kerr effect and the stimulated Raman scattering (SRS). The former,
which arises from the distortion of electronic structure of silica molecules, gives rise to an
instantaneous intensity-dependent refractive index. We will see that the Kerr effect leads to several
intriguing phenomena such as self- and cross-phase modulation, optical solitons, modulation
instability, four-wave mixing, and parametric amplification. Then we will describe stimulated Raman
scattering (SRS) that results from vibrational states of silica molecules and allows efficient down-
frequency conversion.
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Fig. 1. This image shows white-light supercontinuum generation by injecting an intense 800-nm
femtosecond (107" s) laser beam into a 50-m long photonic crystal fiber.



1. Nonlinear propagation in fused silica

1.1 Nonlinear propagation in dielectrics: basic concepts

The glass composing fibers is considered as an isotropic and homogeneous dielectric medium
exhibiting the linear and dispersive behaviours. The response of fibers is quantified by the polarization
density induced in the medium P(¢). This polarization density presents a non-instantaneous response
to an external excitation, which in fact is responsible for the dispersive effects in the fiber. The
polarization response of the medium P(¢) at a given time ¢ is the superposition of the effects of E(¢')
at any previous time ¢’ < ¢ [4]. This means that, mathematically, the response of the medium can be
represented as the convolution of a response function by an external stimulation (as in any other linear
system). In the case of a dispersive dielectric material, the response function is given by a time-
dependent electric susceptibility and the total response of the medium is given by the convolution of
the electric susceptibility with the applied electric field:
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Compared to the “conventional” (linear) propagation, the main difference of nonlinear propagation of
light is the additional terms which are introduced in the polarization density to explain properly its
behavior. Although P(#) requires in general a quantum-mechanical description, it has been proved
that, if the optical carrier frequency is far away from medium resonances, it can be expressed as
function of the applied electric field E by the relation [2]:
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Note that each element y” is a tensor of rank i. Therefore the products inside the integrals are tensor
products. Since fiber is an isotropic medium, the tensor y!) can be described by a single non-zero
element and the tensor y* has only four non-zero elements, which are related to Kleinman symmetry
rules [7].

This description can also be adopted in a dispersive medium when the electric-dipole approximation
is valid. In this approximation, the electromagnetic wavelength involved in the transition between
different atomic energy levels is much larger than the typical size of the atoms or molecules taking
part in the transition. Such conditions are largely satisfied in nonlinear fiber optics, so we will consider
hereafter that the electric-dipole approximation is valid.

In addition, silica molecules present inversion symmetry (the molecule is said to be centrosymmetric).
This means that the properties of the material can not alter by the transformation » — —r, i.e. the
polarization vector is reversed when the electric field is reversed: P(—E) = —P(E). In this case, the
relation between P and E must exhibit odd symmetry, so that all the even terms in the expansion
vanish. Thus, only the odd terms in the expansion are retained (typically, only up to the third-order).

Different processes take place depending if medium presents a second-order or a third-order
nonlinearity. In particular, second-order nonlinear effects (due to x») occur only in non-
centrosymmetric crystals, because they do not present inversion symmetry. In this case, the dominant
non-linear processes are: second-harmonic generation, sum- and difference-frequency generation and
optical parametric oscillation. Third-order non-linear interactions (due to y®) can occur in any
material. They lead, among others, to the following processes: third-harmonic generation (THG),
intensity-dependent refractive index (Kerr effect, including self-phase modulation (SPM) and self-



focusing), four-wave mixing (FWM), stimulated Brillouin scattering (SBS) and stimulated Raman
scattering (SRS).

The effects occurring in a third-order nonlinear medium can be related to the different physical
processes that result in the nonlinear response [2]. A summary of the physical mechanisms that
contribute to the nonlinear susceptibility of fused silica can be found in Table 3.1. There are three
important contributions responsible for the third-order susceptibility: (1) the instantaneous
polarisation contribution caused by the response of bound electrons to the applied electric field
(responsible for the Kerr effect); (2) the molecular re-orientation contribution slightly delayed
(responsible for the Raman effect) and (3) the electrostriction contribution in the fiber (responsible
for the Stimulated Brillouin Scattering). The first two effects will be addressed in this course.
Stimulated Brillouin Scattering, which is very efficient in optical fibers, will be briefly described.

Table 1. Optical effects that contribute to the third-order susceptibility of fused silica.

Physical mechanism Chi3 Response | Related optical process

[esu] time [sec]
Electronic polarization 1.8:10" | <1fs Kerr effect and related phenomena
Molecular re-orientation 3.2:10% ] 100-10°5 Stimulated Raman Scattering (SRS)
Electrostriction (acoustic) 2-10°12 10-10° Stimulated Brillouin Scattering (SBS)

1.2 Optical Kerr effect

In order to understand the effects occurring in fused silica, it is customary to study separately the three
contributions from the nonlinear susceptibility. To understand the implications of nonlinear
propagation, we will consider the Kerr effect isolated (which is relatively simple to treat
mathematically). As mentioned before, this effect is caused by the nonlinear response of bound
electrons and can be considered as an instantaneous effect to the nonlinear susceptibility. Therefore
the elements of the third order susceptibility tensor can be written as yiu(4,¢,t")= yi®: K1) K¢t
At"), and the nonlinear contribution to the polarization induced in the medium would read:
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This shows clearly that the polarization density in the medium is sensitive to the third-order power of
the field amplitude. We can now inject a linearly-polarized monochromatic wave E(f)=Eocos(@t) into
a nonlinear medium described by equation (2). The polarization density reads:
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The terms with the frequencies @ and 3@ appear in the equation. The term with 3 is responsible for
the third-harmonic generation (THG). The terms with @ are responsible for self-phase modulation.
To see this more clearly, we can write the response of the medium at the frequency w as a first-order
response:
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In fact, the effective refractive index of the fiber results from the above relationship where the light
intensity impacts on the refractive index, as shown in the equation:
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where a Taylor series expansion is performed. It is assumed that the nonlinear (intensity-dependent)
part of the refractive index is very small compared to the constant part. The coefficient #: is called the
Kerr coefficient, and its value is around 3.2-102° m%W for fused silica. The value of n2 is dependent



only on the medium. However it may vary from one fiber to another. This is mainly due to the fact
that silica fibers are doped with GeO>. Higher the GeO: doping is, larger the value of n: is obtained.

The main consequences of this third-order nonlinear response are the following:

e  The refractive index of medium depends on light intensity. As a result, the phase velocity of
an optical field in a nonlinear medium depends on its own intensity.

e The carrier frequency of an optical field with varying intensity will alter when it travels
through a nonlinear medium (phase changes with time imply frequency changes).

e The principle of superposition is violated. Different optical fields propagating in a single
nonlinear medium will interact among them and create new frequencies.

e Light can interact with light: an intense optical field can modify the refractive index of
medium which, in its turn, can modify the phase of another optical wave. Nonlinear optics
allows, therefore, an all-optical control of light.

2. Nonlinear propagation in optical fibers

Single-mode optical fibers are highly-confined optical media in which the light travels through a very
small cross-section, and normally over a very long propagation distance. The structure and properties
of the guide (mode area, absorption, dispersion, etc) have a direct impact on its nonlinear
properties[4]. This section reviews some important definitions that we will use for the rest of the
lecture. We will also provide an introduction to the basic equation governing nonlinear propagation
in optical fibers: the Nonlinear Schrodinger equation (NLSE).

2.1 Important definitions

As we saw in the previous section, nonlinear effects depend on light intensity. It is important to note
this fact since it has a direct impact on all the relevant parameters of our study. The intensity of an
optical field is the optical power transmitted per unit area (measured in W/m?). Qualitatively speaking
this means that, for a given input power, the nonlinear effects will be higher when the cross section
of the guided mode is smaller. Since the size and shape of the guided mode is a function of the
refractive index profile, we need some parameters to evaluate the efficiency of the nonlinear effects
in the fiber. The most important parameter for this evaluation is the effective area[4]. The effective
area measures the area that is effectively occupied by the mode to generate the nonlinearities and it is
related to the normalized mode field distribution F(x,y) through the relationship :
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Typical values of effective area at 1550 nm are 80 um? for conventional single-mode (SMF) fibers
(with the zero-dispersion at 1300 nm), and 50 pm? for dispersion-shifted (DSF) fibers. Itis thus clearly
expected that nonlinear effects are generally 1.6 times more efficient in DSFs than in SMFs. In terms
of applications, there is a more interesting parameter to measure the efficiency of the nonlinear effects
which is called the nonlinear coefficient

y=—"= ®)

where k is the wave vector and an is the center frequency of the wave injected into the fiber. This
coefficient measures the phase shift (in radians) per unity power and unity length, which is self-
induced by an optical wave propagating in the fiber. Typical values are 1.3 W-'-km! for conventional
SMFs and around 2 W-!-km™ for DSFs.

Finally, it is important to note that fibers are particularly long nonlinear optical media (tens of
kilometers). In most transparent nonlinear media, losses (pump absorption, scattering, etc) can be
neglected since the interaction distances are short and the losses are very low. In optical fibers,
however, even though the losses are the lowest of any known optical material, the very long



interaction distances lead to a significant power loss of an intense beam during the propagation. In
result, the phase shifts per kilometer will be higher in the beginning part of the fiber than in the end
part. Therefore it is important to define the effective length:
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The effective length measures the length with which a lossless fiberfiber would exhibit the same
nonlinear effect as in a real lossy fiberfiber.. When o=0, Ley=L and when o>0, Ley<L. Thus Les
becomes smaller as the loss increases. Note that as L increases, the effective length converges to the
value 1/a (as L—o, Ley—>1/ ). The value 1/« for standard SMFs is approximately 22 km at 1550 nm.

2.2 The Nonlinear Schriodinger Equation (NLSE)

The Nonlinear Schrodinger Equation is the basic equation describing the propagation of an intense
optical beam in a fiber. We can understand the origin of the equation by rewriting the paraxial
propagation equation (in the frequency domain) of the complex field £:
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where ney is the effective index of fiber, assuming linear propagation and IBNL = PNL(a))e"ﬁ " is the

nonlinear component of polarization in the frequency domain (which propagates with the electric
field). Unlike the linear case, the propagation is perturbed by the term taking into account the
nonlinear contribution due to Kerr effect (which is assumed small all over this derivation). To
understand the effects in the time domain, we can insert a solution of the type:

E(z,a)—a)o)zA(z,a)—a)o)e’ﬂOZ (11)

We can thus obtain the next equation:

4 . oA
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To obtain a meaningful result, we now have to invoke the slowly-varying envelope approximation
(SVEA). In this approximation, it is assumed that the complex amplitude A4(z,¢) varies slowly only
with z and ¢. Therefore, the second order derivatives can be neglected, obtaining:
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where we assume that neghot+ o= 2 . We can now expand negko by means of a Taylor series expansion
around ax to take into account dispersion effects:

nef/,ko=ﬂ0+ﬁ](a)—a)0)+%(a)—a)o)2+... (13)

Inserting this expansion into equation (12) and recalling the properties of the Fourier transform of a
derivative, we can finally write the NLSE in the time domain:
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where the amplitude units are assumed normalized so that the instantaneous power is P=|4|%. For
convenience, it is customary to re-write this equation in terms of a moving frame around the signal
=t—fhz:

04 B, 0’4 . n
—+i—=—=iy|4l 4 14
%t e (14)

This equation can be generalized to include losses, Raman Scattering, self-steepening and shock-wave
formation deriving the Generalized Nonlinear Schroedinger Equation (GNLSE) [8]:
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Dispersion effects are described by the first term on the right hand side of Eq. (13) (up to 12" order)
while nonlinear optical effects such as Self-Phase Modulation, SRS, self-steepening and shock-wave
formation are described by the second one. R(7)=(1-fr)X7)+ fr-hr(7) is the nonlinear response of silica,
including instantaneous (first term, Kerr) and delayed (second term, Raman) effect. fz=0.18 is the
Raman contribution to the Kerr effect and /r(7) is a function describing the delayed Raman response
in the time domain in silica.

It must be stressed in this derivation that the polarization of the optical wave is assumed linear and
constant along the fiber. Although this is not the real case, it is shown empirically that equation (15)
gives a good approximation of the phenomena occurring in the optical fiber. To take into account the
polarization evolution along the fiber, two coupled NLSEs (one for each polarization axis) have to be
integrated.

3. Self- and Cross-phase modulation
3.1 Self-Phase Modulation (SPM)

Self-phase modulation is one of the first manifestations of the optical Kerr effect. It was first observed
in liquids in 1967 [9] and later in other optical media such as optical fibers [10]. Self-phase modulation
is in fact the self-induced phase and frequency changes that occur in an intense optical pulse which
travels through an optical fiber. The intensity-dependent refractive index results in the pulse to
modulate its own optical phase according to its intensity profile. Such effect is qualitatively shown in
figure 3.2. Consider an electric field £1 propagating through an optical fiber. Because of the Kerr
effect, the pulse will create a refractive index variation, being the greatest at the maximum of the pulse
intensity profile. This means that a nonlinear phase shift @v. varies across the pulse. Therefore,
compared to the tails, the peak of the pulse suffers from a larger nonlinear phase shift. This varying
phase shift across the pulse can also be seen as a frequency chirp (the instantaneous frequency is the
derivative of the phase with respect to time) that leads to spectral broadening. Thus red-shifted
(Stokes) and blue-shifted (anti-Stokes) frequencies symmetrically appear in the leading and the
trailing edges of the optical pulse, respectively. The beating of these new frequencies will produce
some interference fringes in the pulse spectrum. The number of fringes N is proportional to the
nonlinear phase shift by Nz This behavior is illustrated in Figure 3.3 that shows the SPM-induced
spectral broadening of a high-peak power picosecond pulse propagating in a short SMF.
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Figure 2 : Qualitative illustration of the effects of self-phase modulation and modulation instability.

We can easily quantify this spectral broadening using equation (14) (lossless NLSE) if we assume no
dispersion in the fiber (/=0). The output amplitude reads as:

Az,t)= 4(0,2)expljs2)4]) (16)

The instantaneous frequency change imposed on a Gaussian pulse | A(z’)|2 = P exp (_1-2 / z-g) would

be:
0| 2 7’
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By taking into account optical loss in the fiber, L should be replaced by L.y As we can see in figure
3.2, there is a linear frequency variation at the centre of a Gaussian pulse. This variation (called chirp
in the linear case) is positive C=2yPoL. When a positively chirped pulse is introduced in a fiber with
negative /%, one can obtain a compression of the pulse width. This is the basis of SPM-based pulse

Compressors.
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Figure 3 : Self-phase modulation-induced spectral broadening of a picosecond pulse propagating
in a short single-mode optical fiber. The figure is obtained from a numerical simulations of Eq.
(14) with the following parameters: L=5m, =50W-'km™, P=12 W, 10=30ps, and %=0.



Cross-phase modulation (XPM) results from the phase changes of an optical wave induced by a
second optical wave with different wavelength or polarization, or propagating in different modes of a
multimode fiber. In this case, the nonlinear phase shift depends on the polarization states of the two
interacting waves. The shiftis two thirds smaller than SPM for an orthogonal polarization and twice
larger than SPM for the same linear polarization and different wavelengths (or modes). The orthogonal
polarization case, which is called degenerate XPM, occurs in birefringent optical fiber. It is
schematically sketched in Figure 3.4 with an incoming pulse polarized at 45° of the fiber birefringent
axes. The input pulse will split into a fast and a slow component. Therefore, XPM leads to pulse
frequency chirp and group-velocity mismatch between the fast and slow components propagating in
a birefringent fiber.

Birefringent optical fiber |(V)
Fast Axis )

y i _— Slow component

Polarization
. : L
;. mode dispersion.:
4 .

"'p v
Fast component

Incoming pulse
polarized at 45°

Slow axis

X

Figure 4 : Principle of degenerate cross-phase modulation in a birefringent optical fiber.
3.2 An application of SPM and XPM: The Nonlinear Optical Loop Mirror (NOLM)

A very interesting device that can advantageously exploit the effects of SPM and XPM is the
Nonlinear Optical Loop Mirror (NOLM) [5][11]. In its simplest configuration, the NOLM is based
on a Sagnac fiber loop in which an attenuator is placed at the end of a loop. Thus the attenuator
introduces a power imbalance between the clock-wise and counter-clockwise propagating fields in
the loop. In linear operation, the Sagnac mirror acts as a perfect mirror. The input pulse is split by a
directional coupler into two counter-propagating electric fields, as shown in Figure 3.5. After a
propagation through the loop the two fields are re-combined at the coupler. Since they travel through
the same path with the opposite direction, the optical path length is identical to both the counter-
propagating fields, producing the same linear phase shifts. As a result, the input pulse is totally
reflected into the input port. Therefore, for low input powers the loop acts as a perfect mirror, and no
light exits to the output port. A polarization controller is used in the loop to optimize the interference
and ensure a total reflection of the light at low powers. In the high power regime, however, the
refractive index of the fiber is modified by the light intensity. This means that the imbalance of the
optical powers in the two arms caused by the attenuator leads to a difference of the effective optical
path lengths for the clockwise and counter-clockwise pulses.

12 Km DSF

Input pulse Output pulse

Figure 5 : The Nonlinear Optical LO(;p Mirror as pulse compressor.



The transmission coefficient T of this device can be written as a function of the phase difference
between the two arms:

T = arsin® (—A(gNL ) (16)
where
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NL =

(1-a) (17)

Po being the input power. Thus, the system behaves like a saturable absorber: the transmission grows
for higher input powers, with a quadratic dependence on the power for small accumulated nonlinear
phase shifts. Since the power in the peak of the pulse is larger than in the wings, the output pulse is
sharper than that at the input, resulting in pulse compression[12]. One negative aspect of the NOLM
is that the phase of the output pulse is also altered by SPM. Therefore, the device induces a chirp in
the signal. The chirp can be reduced by adding an anomalously dispersive fiber onto the output of the
NOLM.

Some more interesting features arise when two beams are combined in the Sagnac loop. In this case,
one can use the effect of XPM to provide the nonlinear phase shifts required to imbalance the
interferometer. With this configuration, some interesting all-optical functions can be achieved such
as wavelength conversion, ultra-high speed de-multiplexing [13], rapid all-optical switching [14].

4. Optical Solitons

A fundamental optical soliton is a wave-packet or pulse that preserves its shape during the
propagation, being unaffected by dispersion and nonlinearities [16]. Qualitatively speaking,
fundamental solitons can simply be understood as an equilibrium between pulse sharpening that
occurs in the anomalous dispersion regime through SPM and pulse spread that occurs due to
anomalous dispersion in a fiber [16]. A soliton is obtained just by the adequate balance between Kerr
effect and dispersion, which enables essentially no distortion on the pulse (in other words, the
distortions mutually compensate).

Scalar solitons appear only when the fiber exhibits anomalous dispersion. In this case, fundamental
solitons are the only stationary solutions of the NLSE. This is, solitons are the unique transmission
format that allows transmission without distortion. The existence of soliton solutions of the NLSE can
be easily verified by inserting the following solution into the NLSE:

N 2

Thus, fundamental solitons have the shape of a hyperbolic secant. Fundamental solitons are obtained
only when the following condition is satisfied:

Alz,t)= \/FO sec h(fj exp(i b zj (20)

N = =1 @1)

where 7o stands for the temporal width of the pulse. It is expected from the equation that a strict
balance is required between peak power, duration of the soliton and dispersion in fiber to achieve such
un-distorted transmission. It must be mentioned that breathing or periodic solutions can be obtained
for integer N >1. These solutions are known as higher-order solitons. For instance, Figure 3.6 shows
a third—order periodic soliton propagating in a 2-km single-mode optical fiber. In particular it is clearly
seen that the dynamic solutions show pulse collapse, splitting and then soliton recovery in the fiber.
These solutions are however unstable because of higher-order dispersion and Raman effects. For this
reason, they tend to split into several fundamental solitons during the propagation and to shed energy
in the form of frequency-shifted dispersive waves [17]. This is the basis of supercontinuum generation
[18].

Solitons were first demonstrated in 1980 in an experiment in Bell Labs [19]. Since then, they have
been widely demonstrated for a robust transmission format in many areas. In an experiment in 1989,



solitons were propagated without significant degradation over more than 10,000 km with periodic
amplification [20]. One of the interesting properties of solitons is that they tend to adapt their
parameters through the propagation so as to satisfy the soliton condition given by equation (20). If
one of the parameters is modified (for instance, the dispersion of the fiber), the soliton will adapt the
rest of the parameters to keep N=1. This is the basis of adiabatic soliton compression in dispersion
decreasing fibers [21]: as the fiber dispersion decreases along the fiber, the soliton width 7y decreases
as well to keep N=1.
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Figure 6. Third-order soliton (N=3) propagating in a 2 km-long single-mode fiber obtained from a
numerical simulation of Eq. (14) with the following parameters : L=2 km, =2 W-'km!, P=250 mW,
70=10ps and £=—9 ps*/km.

5. Modulation instability (MI)

As in the case of solitons, modulation instability (MI) is a non-linear phenomenon that has been
observed in several branches of physics such as plasma physics, hydrodynamics, or matter waves
[22]. In optics, it occurs when the steady-state of an electromagnetic field becomes unstable due to an
interplay between anomalous dispersion and nonlinearity in a medium. MI is initiated by SPM and
manifests as the break-up of a continuous field into a train of ultra-short pulses. As the typical MI
oscillation frequency vmr is of the order of 0.1 to 1 THz, pulses with temporal duration 7 >> 1/vm can
be considered quasi-cw respect to this instability, that is, pulses usually longer than 10 ps. In the
frequency domain, it gives rise to two sidebands (Stokes and anti-Stokes) around the center frequency
of a quasi-monochromatic cw field. Together with four-wave mixing, this process leads to the
generation of many equally-spaced frequency components. These latter ones interfere each other in a
similar way to that in a mode-locked laser and produces a pulse train. Modulation instability plays a
fundamental role in supercontinuum generation with cw pumping.

Modulation instability can also be qualitatively understood from Figure 3.2. We consider a quasi-cw
electric field E1 propagating through an optical fiber. This field induces a small intensity perturbation.
Because of Kerr effect, this intensity perturbation will create a refractive index variation, being the
largest at the point of maximum intensity of the field. Therefore, a varying nonlinear phase shift @z
affects the signal and the peak of the perturbation suffers from a nonlinear phase shift larger than that
in the valleys. As in the previous case, this varying phase shift across the pulse can also be considered
as a frequency chirp. The leading edge of the perturbation is shifted towards the blue and the trailing
edge towards the red. Now the key point is to consider what happens in the different dispersion
regimes. When the dispersion is normal (£>0, D<0), the red shifted components travel more slowly
than the blue ones. In result the trailing edge lags compared to the leading edge and the intensity
perturbation profile spreads out. On the other hand, when the dispersion is anomalous (/£%<0, D>0),
the trailing edge travels faster than the leading edge, thus it allows sharpening of the intensity
perturbation profile. As the profile becomes sharper, the whole process can be reinforced, thus leading
to an exponential amplification of the perturbation.

The process can be described mathematically by a stability analysis of a CW solution of the NLSE.
That results in creating gain bands at both side of the pump frequency, the gain coefficient being :
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where Q=@—an is the frequency detuning between the pump and the frequency component analyzed.
A simple analysis of this gain curve reveals two maxima at a detuned frequency:

(2,7,
Q =t ‘[7}2‘ (19)

This frequency can be interpreted as follows: as we have briefly described at the beginning of this
section, the effect of MI causes a spontaneous break-up of an intense cw light into a pulse train. The
most amplified spectral components are those oscillating at frequency Qmax. This leads to two
symmetric sidebands at frequency wo £ Qmax (anti-Stokes and Stokes) in the frequency domain. In the
time domain, it generates a pulse train with period 7u = 27/Qmax. Omax is thus the repetition rate of
the generated pulse train, as shown in Figure 3.7. MI can also be stimulated with an optical seed at
the fiber input whose frequency matches the modulation frequency. In this case, it refers to induced
MI whereas in the absence it is spontaneous MI. We will see in section 3.7 how induced MI involves
in optical parametric amplification.
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Figure 7 : Modulation instability of a noisy continuous field and a soliton-like pulse train generated
in a single-mode optical fiber, obtained from a numerical simulation of Eq. (14) with the following
parameters: L=3km, j=2W-'km', P=500 mW and £=-9 ps’/km.

6. Four-wave mixing (FWM)
6.1 Origin of four-wave mixing

Third-order nonlinearities allow generation of new frequency components when two or more waves
with different frequencies exist in a fiber [24]. This effect is generally known as four-wave mixing
(FWM) phenomena. In order to understand the origin of new frequencies, the interested reader is
invited to insert two fields at different frequencies (o1 and ar) in the expression of the polarization
density (equation (3)) and check the frequencies of the resulting terms. In addition to third-harmonic,
self-phase and cross-phase modulation terms, new terms at frequencies 2ai+a» and 2an+ @1 appear.
Conventionally, frequencies w1 and @z are close, so the terms with 2a1—a» and 2an—am1 will fall close
to the frequencies of two input waves whilst the terms with other frequencies will fall very far from
those of the two waves. It is expected from phase matching conditions (see below) that the terms with
far frequencies tend to vanish, while the terms with close frequencies (which satisfy phase matching
relations) grow over the fiber distance.
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Figure 8: Left: Qualitative explanation of the effect of four-wave mixing. Right: Spectrum of a simple
FWM experiment performed in a dispersion-shifted fiber.

A qualitative explanation of the effect of FWM can be seen in figure 3.8. Two beams E1 and £
combine in the optical fiber. The interference between the two creates a beating intensity pattern at a
frequency of mi—an. This intensity pattern will induce a refractive index grating in the fiber, which
will, in turn, introduce a small phase modulation on both fields £1 and E>. Practically, a small phase
modulation on E1 will give rise to two sidebands at both sides of @, thus creating small contributions
to an and 2@1—a». The similar process will apply to £, hence creating contributions to w1 and 2 a—a@1.

6.2 Phase-matching

The above description holds well for short fibers. In order to consider the effect in long fibers, one
should consider the sum of all the FWM contributions generated in many short fibers. The main
intuitive conclusion is that the growth of the mixing product along the fiber will depend whether the
contributions from all the short fibers add in phase or not. For optimum conversion efficiency, all the
contributions from all the short fibers needs to be added in phase. This leads to the condition that the
phase mismatch between the generated FWM contribution and the propagating wave at the FWM
frequency should be zero. If we consider the FWM product at ex=2@1—a», the phase mismatch will
be:

AB =2p(w,)- Blo,)- Bl,) (21)

called the phase matching condition. Phase matching conditions appear in many nonlis appear in
many nonlinear optical processes. The nonlinear processes that depend on phase matching condition
are called phase-sensitive processes. Examples of other phase-sensitive processes are frequency
doubling, sum and difference frequency generation, and parametric amplification and oscillation.

We can get some more insight on the implications of this phase matching condition by using the
Taylor series expansion of the propagation constant Eq. (13) around @i. The result is:

AB = ﬁz(a)z 0 )2 +%(a)z — o )4 +.. (22)

Considering the small value of the fourth-order term, the only possibility to satisfy phase-matching
condition is to work in the zero-dispersion wavelength region of the fiber (/%=0) [25].



7 Optical Parametric Amplification (OPA)
7.1 Principle of parametric amplification

The underlying nonlinear process for parametric amplification is the optical Kerr effect which causes
a refractive index variation proportional to the local intensity of light [26][27][28]. When a high-
power pump wave and a frequency-detuned small signal wave travel together in an optical fiber, they
produce interference beats and modulate the refractive index via the Kerr effect, leading to the
generation of a light-induced moving index grating. This phenomenological approach is schematically
sketched in Figure 3.9. In such a scheme, parametric amplification can be seen in the time domain as
an energy transfer from the pump to both the signal and idler waves by a diffraction-like process on
the refractive index grating. In the frequency domain, parametric amplification can be viewed as a
four-wave mixing (FWM) process, as previously described in section 3.6, where the pump and the
signal are both present at the fiber's input. When phase matching is fulfilled, exponential-like
amplification of the signal together with generation of an idler wave is possible. The phase matching
condition and the parametric gain are linked to the index grating period and the grating contrast,
respectively. From a physical point of view, OPA is formally equivalent to the induced MI process
described in section 3.5 since the incoming continuous pump wave breaks up into high-contrast
amplitude modulations in the form of ultra-short optical pulses, as shown in Figures 3.7 and 3.9. MI
is studied in the time domain whereas OPA is commonly investigated in the Fourier domain. Both
terms are now recognized and used in the literature. However, MI and OPA do not manifest
themselves in exactly the same situations. OPA occurs for moderate values of the nonlinear phase
shift yPL whereas spontaneous MI requires higher values of yPL to be clearly observed.
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Figure 9 Principle of parametric amplification in optical fiber through the optical Kerr effect.

When there is no input signal, OPA can be considered as the effect of amplifying vacuum or quantum
noise. The resulting parametric amplified spontaneous emission (ASE) is considered as a detrimental
noise source for optical amplification. It can however be reduced when fiber OPA functions in a
phase-sensitive configuration, i.e., when the three waves including the idler propagate in a controlled
relative phase [26].

7.2 Parametric gain and bandwidth

As mentioned in section 3.6, phase-matching in the third telecommunication band at 1.55 um is
generally achieved near the zero-dispersion wavelength of dispersion-shifted fibers (DSF) to provide
broadband operation and high gain at telecommunication wavelengths. The parametric gain of the
signal is then given by the following expression [26]:

2
G=1+ (ﬁ sinh( gL, )J (23)
2 :

where o2 = (yP) —(x/2) is the parametric gain factor per unit length and x = AS +2yP is the
g =\ v
phase mismatch that combines the dispersion-induced linear phase shift A expressed in Eq. (23)



with the nonlinear phase shift due to XPM. Note that the parametric gain factor g can be
mathematically linked to the MI gain given in Eq. (18). Equation (24) shows that the parametric gain
band can be easily tailored by dispersion management, especially by tuning the second and fourth-
order dispersion coefficients of DSFs. Figure 3.10 shows a typical example of a flat parametric gain
band of up to 100 nm that can be generated in a dispersion-tailored fiber arrangement.

7.3 Applications of Fiber OPA

Fiber-optic parametric amplifiers (FOPAs) and wavelength converters show a number of
characteristics attractive to all-optical signal processing and ultra-high bit rate communication
systems [28]. Their advantages over rare-earth-doped (Erbium) fiber amplifiers include a broad gain
bandwidth and access to arbitrary wavelength ranges (by tailoring the fiber dispersion). They
additionally offer the possibilities to achieve wavelength conversion and, as recently demonstrated,
many other applications such as ultrafast all-optical signal sampling, limiting, buffering, high-
repetition-rate pulse train generation, or time-division multiplexing [26][28]. In addition to broadband
operation and high gain, FOPAs also provide low noise figures, equivalent to those of conventional
optical fiber amplifiers or even better when they operate in a phase-sensitive configuration. First
attempts were made in the 70's in the visible spectral region by use of birefringent or multimode fibers
[23], and later in the 1.3 pum window with SMF [29]. Nowadays, most FOPAs are being developed in
the 1.55 pm band to meet the requirements of the telecommunication industry [24].

Gain (dB)

Figure 10 : Broadband and flat parametric gain versus pump-signal wavelength detuning in a
dispersion-tailored four fiber arrangement obtained from a numerical simulation of Eq. (14) at P= 500
mW.

As many other nonlinear effects, Fiber OPA is strongly polarization-dependent. Therefore, the input
state of polarization (SOP) of the signal must be parallel to that of the pump. The polarization
dependence of the parametric gain can however be significantly reduced by using techniques such as
polarization diversity or cross-polarized pump waves [26].

8. Stimulated Raman scattering (SRS)
8.1 Principle of Raman scattering

The principle of Raman scattering is schematically described in Fig. 3.11. This third-order nonlinear
effect is an inelastic scattering process, where an incoming photon of energy /v interacts with a
coherently-excited state of the system E\, that is, the vibrational modes of a silica (SiO2) molecule.
As a result of this light-matter interaction, a frequency down-converted photon 4vs is emitted. The
incident photons are annihilated to create a lower energy Stokes photon. Different to acoustic
phonons, an optical phonon vibrating in the THz range involved in stimulated Brillouin scattering
(SBS). Up-converted (anti-Stokes) photons may also be emitted if the excited state is sufficiently
populated. The Raman effect was discovered by C. V. Raman in 1928 in liquids, for which he received



the Nobel Prize in Physics in 1930 [30]. What he observed was the spontaneous Raman scattering, in
which an infinitesimal fraction (less than 10) of the input energy is converted to the scattered light
[31]. This effect does not provide optical amplification. However, if the incident laser beam is
sufficiently intense, the photon-phonon scattering process becomes self-stimulated. The temporal
beating between the pump and Stokes waves stimulates the vibrational states of silica molecules, and
the wave grows rapidly as more and more pump energy is transferred to it. In the stimulated regime,
the growth of the Stokes signal is exponential and much more efficient than in the anti-Stokes
scattering which requires phonon population.

E, = hv,

Incoming (Vibrational state)
photon _
Energy
Down-frequency
............ Stokes Photon
hv,
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Figure 11 Principle of inelastic Raman scattering of light.
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Frequency detuning (THz)

Figure 12 : Raman susceptibility in fused silica versus frequency detuning between pump and
Stokes waves. Solid line: imaginary part. Dashed line: real part.

The Raman susceptibility ZS) (a)) , which is plotted in Figure 3.12, is the Fourier transform of the

delayed Raman response R(7) of Eq. (15) [32]. It exhibits a real part (dashed) and an imaginary part
(solid curve) that are the Raman contribution to the Kerr effect and the Raman gain, respectively. This
results from the Kramers-Kronig relations due to causality. This implies that the real part is a
symmetric function whereas the imaginary part is anti-symmetric, with gain on the Stokes side and
loss on the anti-Stokes side. Thus, in the stimulated regime, the anti-Stokes wave is absorbed by the
pump through Raman scattering. In optical fibers, however, Raman anti-Stokes wave is often emitted
via four wave-mixing [32]. The Raman frequency shift in fused silica is Qr/27=13.2 THz (440 cm™),
which corresponds to the inverse of the fast response time of molecular vibrations (zr=75 fs) [34].



In the continuous-wave pumping regime, the nonlinear interaction between the pump and signal is
governed by the following set of coupled power equations [4] :

oP w, g
aP:__P RPPPs_aPPP (24)
z W Aeff
OP.
Es s - Er PPy — ag by (25)
Z o

where apand os are the absorption coefficients that are related to fiber loss at the pump and signal
wavelengths. Equation (24) is readily solved if we neglect the first term of the right-hand side that
accounts pump depletion. By substituting the solution in the second equation (25), we can easily solve
the signal power at the amplifier’s output:

a<L>=a<0>exp[j—RPpLeﬁ- —asL] (26)
eff

with Ps(0) and Pp, the input signal and pump power, respectively. A¢ris the fiber effective core area
defined in Equation (7). gr is the Raman gain coefficient which is typically of the order of 107> m/W
in pure silica fiber. Legis the effective fiber length defined in equation (9).

Another important parameter to know is the Raman threshold or critical power. It is defined as the
power for which the Stokes power generated from noise becomes equal to the pump power [4]:

L,
T — 27)
g RLef/"

Note that the Raman gain efficiency gr/As can be significantly enhanced or frequency shifted by use
of dopants inside the fiber core [35]. For instance, in fibers highly doped with germanium, the Raman
gain can be seven times greater than that in SMFs. Two factors contribute to enhance the Raman gain
in these fibers: first, the relatively high GeO: doping provides a larger Raman gain coefficient; second,
the effective area can be made very small in these fibers, leading to higher power confinement and
therefore larger gains. These fibers are often used in Raman amplifiers and lasers. In addition,
phospho-silicate (P20s) glass has two scattering bands shifted from 19.5 THz (650 cm™) and 39 THz
(1300 cm™).

8.2 Raman amplifiers for telecommunications

Because of the amorphous nature of fused silica and the short phonon lifetime (t1=150 f5s), optical
fibers are used in a broadband gain process via Raman effect as shown in Figure 3.12. This wide gain
bandwidth is very advantageous to make Raman fiber amplifiers (RFA) and Raman fiber lasers (RFL)
[35]. For a pump at 1450 nm, the gain band provides maximum gain at 1550nm over a range of 40
nm as shown in figure 3.13.

Moreover, it is possible to generate a flat and wide gain bandwidth by injecting multiple pumps in a
single optical fiber as shown in figure 3.14. Time-division multiplexing of pump wavelengths is often
required to suppress energy transfer between the pumps in such a configuration. A wide gain
bandwidth as shown in the figure has recently enabled to transmit data beyond 10 Tbit/s transfer rate
over longer than 10000 km of fiber [33].
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Figure 14 : Principle of multi-wavelength pumping for flat and broadband Raman amplification at
telecommunication wavelengths (C and L bands).

Note also that Raman fiber amplification, like fiber OPA, is strongly polarization-dependent. The
Raman gain coefficient of a signal with polarisation parallel to the pump is indeed 30 times higher
than that of an orthogonally polarized one. However, by using cross-polarized pumps or pump

polarization diversity, Raman gain independent on the polarization state of incident signal can be
obtained.

8.2 Cascaded Raman generation

Cascaded Raman generation can be understood as an iteration of fundamental stimulated Raman
scattering (SRS) processes. Stokes wave generated in each iteration acts as a pump to produce another
Stokes wave with a different frequency. Cascaded SRS thus produces multiple additional lines or
secondary radiations in the spectrum of light scattered in the optical fiber. As an example, Figure 3.14
shows cascaded Raman generation using a high-peak power 532-nm (green) nanosecond microchip
laser and a 20-m long single-mode polarization maintaining fiber. Seven Raman orders can be seen

from the green to the red as shown in the figure. Note that, in optical fibers, higher-order Stokes waves
can often be obtained by four-wave mixing.



Figure 14 : The image shows cascaded Raman scattering by launching a 532-nm (green)
nanosecond microchip laser into a 20m long single-mode polarization maintaining fiber. More than
seven Raman orders can be observed from the green (input laser wavelength) to the red.

8.3 Raman Fiber Laser (RFL)

Optical fiber waveguides have been early recognized as an ideal medium to achieve cascaded Raman
wavelength conversion for a purpose in generating new laser wavelengths and developing wide-band
optical amplifiers. GeOz and P-Os doped fibers are used extensively to construct Raman fiber lasers
(RFLs), which can cover the whole spectral range from 1.2 um to 2 um [5]. The great advantage of
RFLs over other high-power sources (doped fiber, semiconductor lasers, etc) is that cascaded Raman
order generation efficiently allows access to spectral ranges previously unattainable with other
technologies. As shown in Figure 3.15, RFL is an all-fiber nested Fabry-Perot resonator with a highly-
doped fiber as a Raman gain medium and fiber Bragg grating (FBG) reflectors. In such a resonator, a
high-power Ytterbium continuous pump wave near 1100 nm is converted into a single or multiple
high-power waves in the 1200—1600 nm range through cascaded Raman generation. Typically, RFLs
emit CW and deliver medium power (1 to 50 W). They are used as a convenient laser source for
pumping optical fiber amplifiers and some lasers.
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Figure 3.15 : Top : Setup of a dual-order cascaded Raman fiber laser made with a phosphosilicate
fiber as Raman gain medium and five nested fiber Bragg gratings (FBGs) as reflectors. Bottom: RFL
spectrum.



9. Conclusion

In this course, we have described the basics of all the nonlinear optical effects that occur when high-
intensity electromagnetic fields propagate in optical fibers. As nonlinear fiber optics is a very
attractive research field, it has been covered in many previous reviews and books. The readers are
particularly recommended to refer to references [4] and [5] that combine both theory and experiments.
Other books and references cited in the bibliography contain valuable material and handy references.
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