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Nonlinear optical effects are remarkable physical phenomena that can occur when a high-intensity 
light beam propagates through an optical medium [1]. If the pump beam is intense enough and the 
medium exhibits the suitable nonlinear behavior, the typical properties of the medium (absorption, 
refractive index) can alter because of the input beam. Unlike the linear propagation of light where the 
spectral and spatial components of light do not affect each other in a medium, the nonlinear interaction 
of light with matter gives rise to complex coupling between the light components through the medium 
[2]. These effects have been very often regarded as detrimental to fiber-based optical communication 
systems [3]. However, they also offer new and exciting potential applications, such as devices in 
which light can be controlled by light [4]. Due to their strong light confinement capabilities, optical 
fibers have been early recognized as an ideal medium to exploit the nonlinear effects for all-optical 
processing applications in telecommunication and fiber laser industries [5]. This research field has 
recently been dramatically stimulated by the development of a new generation of highly nonlinear 
optical fibers which has an array of tiny holes running through the whole length of the fiber. These 
so-called photonic crystal or microstructured fibers allow conversion of a single colour laser beam 
into a white light supercontinuum spanning two octaves in frequency [6] (i.e., a laser rainbow 
extending from the ultra-violet well into the infra-red as shown in Figure 3.1). This new light source 
has revolutionized optical metrology, making absolute measurements of optical frequencies with 
unprecedented accuracy, and optical coherence tomography (OCT) with enhanced resolution. 
This course is intended to provide an overview of nonlinear fiber optics in a way that is simultaneously 
accessible and technically comprehensive. First, we will describe some basic concepts of nonlinear 
propagation in dielectrics, so as to understand the origin of the main third-order nonlinear effects in 
fused silica, namely the optical Kerr effect and the stimulated Raman scattering (SRS). The former, 
which arises from the distortion of electronic structure of silica molecules, gives rise to an 
instantaneous intensity-dependent refractive index. We will see that the Kerr effect leads to several 
intriguing phenomena such as self- and cross-phase modulation, optical solitons, modulation 
instability, four-wave mixing, and parametric amplification. Then we will describe stimulated Raman 
scattering (SRS) that results from vibrational states of silica molecules and allows efficient down-
frequency conversion. 
 

 
 

Fig. 1. This image shows white-light supercontinuum generation by injecting an intense 800-nm 
femtosecond (10-15 s) laser beam into a 50-m long photonic crystal fiber. 



1. Nonlinear propagation in fused silica 
 

 
1.1 Nonlinear propagation in dielectrics: basic concepts 

 
The glass composing fibers is considered as an isotropic and homogeneous dielectric medium 
exhibiting the linear and dispersive behaviours. The response of fibers is quantified by the polarization 
density induced in the medium P(t). This polarization density presents a non-instantaneous response 
to an external excitation, which in fact is responsible for the dispersive effects in the fiber. The 
polarization response of the medium P(t) at a given time t is the superposition of the effects of E(t′) 
at any previous time t′ ≤ t [4]. This means that, mathematically, the response of the medium can be 
represented as the convolution of a response function by an external stimulation (as in any other linear 
system). In the case of a dispersive dielectric material, the response function is given by a time-
dependent electric susceptibility and the total response of the medium is given by the convolution of 
the electric susceptibility with the applied electric field: 
 

 
Compared to the “conventional” (linear) propagation, the main difference of nonlinear propagation of 
light is the additional terms which are introduced in the polarization density to explain properly its 
behavior. Although P(t) requires in general a quantum-mechanical description, it has been proved 
that, if the optical carrier frequency is far away from medium resonances, it can be expressed as 
function of the applied electric field E by the relation [2]: 
 

Note that each element χ(i) is a tensor of rank i. Therefore the products inside the integrals are tensor 
products. Since fiber is an isotropic medium, the tensor χ(1) can be described by a single non-zero 
element and the tensor χ(3) has only four non-zero elements, which are related to Kleinman symmetry 
rules [7]. 
 
This description can also be adopted in a dispersive medium when the electric-dipole approximation 
is valid. In this approximation, the electromagnetic wavelength involved in the transition between 
different atomic energy levels is much larger than the typical size of the atoms or molecules taking 
part in the transition. Such conditions are largely satisfied in nonlinear fiber optics, so we will consider 
hereafter that the electric-dipole approximation is valid.  
 
In addition, silica molecules present inversion symmetry (the molecule is said to be centrosymmetric). 
This means that the properties of the material can not alter by the transformation r → −r, i.e. the 
polarization vector is reversed when the electric field is reversed: P(−E) = −P(E). In this case, the 
relation between P and E must exhibit odd symmetry, so that all the even terms in the expansion 
vanish. Thus, only the odd terms in the expansion are retained (typically, only up to the third-order). 
 
Different processes take place depending if medium presents a second-order or a third-order 
nonlinearity. In particular, second-order nonlinear effects (due to χ(2)) occur only in non-
centrosymmetric crystals, because they do not present inversion symmetry. In this case, the dominant 
non-linear processes are: second-harmonic generation, sum- and difference-frequency generation and 
optical parametric oscillation. Third-order non-linear interactions (due to χ(3)) can occur in any 
material. They lead, among others, to the following processes: third-harmonic generation (THG), 
intensity-dependent refractive index (Kerr effect, including self-phase modulation (SPM) and self-
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focusing), four-wave mixing (FWM), stimulated Brillouin scattering (SBS) and stimulated Raman 
scattering (SRS). 
 
The effects occurring in a third-order nonlinear medium can be related to the different physical 
processes that result in the nonlinear response [2]. A summary of the physical mechanisms that 
contribute to the nonlinear susceptibility of fused silica can be found in Table 3.1. There are three 
important contributions responsible for the third-order susceptibility: (1) the instantaneous 
polarisation contribution caused by the response of bound electrons to the applied electric field 
(responsible for the Kerr effect); (2) the molecular re-orientation contribution slightly delayed 
(responsible for the Raman effect) and (3) the electrostriction contribution in the fiber (responsible 
for the Stimulated Brillouin Scattering). The first two effects will be addressed in this course. 
Stimulated Brillouin Scattering, which is very efficient in optical fibers, will be briefly described. 
 
Table 1. Optical effects that contribute to the third-order susceptibility of fused silica. 
 

Physical mechanism Chi3 
[esu] 

Response 
time [sec] 

Related optical process 

Electronic polarization 1.8·10-14 < 1 fs Kerr effect and related phenomena  
Molecular re-orientation 3.2·10-15 100·10-15 Stimulated Raman Scattering (SRS) 
Electrostriction (acoustic) 2·10-12 10·10-9 Stimulated Brillouin Scattering (SBS) 

 
1.2 Optical Kerr effect 
 
In order to understand the effects occurring in fused silica, it is customary to study separately the three 
contributions from the nonlinear susceptibility. To understand the implications of nonlinear 
propagation, we will consider the Kerr effect isolated (which is relatively simple to treat 
mathematically). As mentioned before, this effect is caused by the nonlinear response of bound 
electrons and can be considered as an instantaneous effect to the nonlinear susceptibility. Therefore 
the elements of the third order susceptibility tensor can be written as χijkl(3)(t,t',t")= χijkl(3)·d(t)·d(t')· 
d(t"), and the nonlinear contribution to the polarization induced in the medium would read: 
 

 
This shows clearly that the polarization density in the medium is sensitive to the third-order power of 
the field amplitude. We can now inject a linearly-polarized monochromatic wave E(t)=E0cos(wt) into 
a nonlinear medium described by equation (2). The polarization density reads: 
 

 
The terms with the frequencies w and 3w appear in the equation. The term with 3w is responsible for 
the third-harmonic generation (THG). The terms with w are responsible for self-phase modulation. 
To see this more clearly, we can write the response of the medium at the frequency w as a first-order 
response: 

 
 In fact, the effective refractive index of the fiber results from the above relationship where the light 
intensity impacts on the refractive index, as shown in the equation: 
 

 
where a Taylor series expansion is performed. It is assumed that the nonlinear (intensity-dependent) 
part of the refractive index is very small compared to the constant part. The coefficient n2 is called the 
Kerr coefficient, and its value is around 3.2·10-20 m2/W for fused silica. The value of n2 is dependent 
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only on the medium. However it may vary from one fiber to another. This is mainly due to the fact 
that silica fibers are doped with GeO2. Higher the GeO2 doping is, larger the value of n2 is obtained.  
 
The main consequences of this third-order nonlinear response are the following: 
 

• The refractive index of medium depends on light intensity. As a result, the phase velocity of 
an optical field in a nonlinear medium depends on its own intensity. 

• The carrier frequency of an optical field with varying intensity will alter when it travels 
through a nonlinear medium (phase changes with time imply frequency changes). 

• The principle of superposition is violated. Different optical fields propagating in a single 
nonlinear medium will interact among them and create new frequencies. 

• Light can interact with light: an intense optical field can modify the refractive index of 
medium which, in its turn, can modify the phase of another optical wave. Nonlinear optics 
allows, therefore, an all-optical control of light. 

 
2. Nonlinear propagation in optical fibers 
 
Single-mode optical fibers are highly-confined optical media in which the light travels through a very 
small cross-section, and normally over a very long propagation distance. The structure and properties 
of the guide (mode area, absorption, dispersion, etc) have a direct impact on its nonlinear 
properties[4]. This section reviews some important definitions that we will use for the rest of the 
lecture. We will also provide an introduction to the basic equation governing nonlinear propagation 
in optical fibers: the Nonlinear Schrödinger equation (NLSE). 
 
2.1 Important definitions 
 
As we saw in the previous section, nonlinear effects depend on light intensity. It is important to note 
this fact since it has a direct impact on all the relevant parameters of our study. The intensity of an 
optical field is the optical power transmitted per unit area (measured in W/m2). Qualitatively speaking 
this means that, for a given input power, the nonlinear effects will be higher when the cross section 
of the guided mode is smaller. Since the size and shape of the guided mode is a function of the 
refractive index profile, we need some parameters to evaluate the efficiency of the nonlinear effects 
in the fiber. The most important parameter for this evaluation is the effective area[4]. The effective 
area measures the area that is effectively occupied by the mode to generate the nonlinearities and it is 
related to the normalized mode field distribution F(x,y) through the relationship : 
 

 
Typical values of effective area at 1550 nm are 80 µm2 for conventional single-mode (SMF) fibers 
(with the zero-dispersion at 1300 nm), and 50 µm2 for dispersion-shifted (DSF) fibers. It is thus clearly 
expected that nonlinear effects are generally 1.6 times more efficient in DSFs than in SMFs. In terms 
of applications, there is a more interesting parameter to measure the efficiency of the nonlinear effects 
which is called the nonlinear coefficient : 
 

 
where k is the wave vector and w0 is the center frequency of the wave injected into the fiber. This 
coefficient measures the phase shift (in radians) per unity power and unity length, which is self-
induced by an optical wave propagating in the fiber. Typical values are 1.3 W-1·km-1 for conventional 
SMFs and around 2 W-1·km-1 for DSFs. 
 
Finally, it is important to note that fibers are particularly long nonlinear optical media (tens of 
kilometers). In most transparent nonlinear media, losses (pump absorption, scattering, etc) can be 
neglected since the interaction distances are short and the losses are very low. In optical fibers, 
however, even though the losses are the lowest of any known optical material, the very long 
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interaction distances lead to a significant power loss of an intense beam during the propagation. In 
result, the phase shifts per kilometer will be higher in the beginning part of the fiber than in the end 
part. Therefore it is  important to define the effective length: 
 

 
The effective length measures the length with which a lossless fiberfiber would exhibit the same 
nonlinear effect as in a real lossy fiberfiber.. When a=0, Leff=L and when a>0, Leff<L. Thus Leff 
becomes smaller as the loss increases. Note that as L increases, the effective length converges to the 
value 1/a (as L®¥, Leff®1/a). The value 1/a for standard SMFs is approximately 22 km at 1550 nm. 
 
2.2 The Nonlinear Schrödinger Equation (NLSE) 
 
The Nonlinear Schrödinger Equation is the basic equation describing the propagation of an intense 
optical beam in a fiber. We can understand the origin of the equation by rewriting the paraxial 
propagation equation (in the frequency domain) of the complex field Ẽ: 
 

 
where neff is the effective index of fiber, assuming linear propagation and  is the 
nonlinear component of polarization in the frequency domain (which propagates with the electric 
field). Unlike the linear case, the propagation is perturbed by the term taking into account the 
nonlinear contribution due to Kerr effect (which is assumed small all over this derivation). To 
understand the effects in the time domain, we can insert a solution of the type: 
 

 
We can thus obtain the next equation: 
 

 
To obtain a meaningful result, we now have to invoke the slowly-varying envelope approximation 
(SVEA). In this approximation, it is assumed that the complex amplitude A(z,t) varies slowly only 
with z and t. Therefore, the second order derivatives can be neglected, obtaining: 
 

 
where we assume that neffk0+b0 @ 2b0. We can now expand neffk0 by means of a Taylor series expansion 
around w0 to take into account dispersion effects: 
 

 
 Inserting this expansion into equation (12) and recalling the properties of the Fourier transform of a 
derivative, we can finally write the NLSE in the time domain: 
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 where the amplitude units are assumed normalized so that the instantaneous power is P=|A|2. For 
convenience, it is customary to re-write this equation in terms of a moving frame around the signal 
τ=t-b1z: 
 

 
This equation can be generalized to include losses, Raman Scattering, self-steepening and shock-wave 
formation deriving the Generalized Nonlinear Schroedinger Equation (GNLSE) [8]: 
 

 
Dispersion effects are described by the first term on the right hand side of Eq. (13) (up to 12th order) 
while nonlinear optical effects such as Self-Phase Modulation, SRS, self-steepening and shock-wave 
formation are described by the second one. R(τ)=(1-fR)d(τ)+ fR·hR(τ) is the nonlinear response of silica, 
including instantaneous (first term, Kerr) and delayed (second term, Raman) effect. fR=0.18 is the 
Raman contribution to the Kerr effect and hR(τ) is a function describing the delayed Raman response 
in the time domain in silica. 
It must be stressed in this derivation that the polarization of the optical wave is assumed linear and 
constant along the fiber. Although this is not the real case, it is shown empirically that equation (15) 
gives a good approximation of the phenomena occurring in the optical fiber. To take into account the 
polarization evolution along the fiber, two coupled NLSEs (one for each polarization axis) have to be 
integrated. 
 
3. Self- and Cross-phase modulation 
  
3.1 Self-Phase Modulation (SPM)  
  
Self-phase modulation is one of the first manifestations of the optical Kerr effect. It was first observed 
in liquids in 1967 [9] and later in other optical media such as optical fibers [10]. Self-phase modulation 
is in fact the self-induced phase and frequency changes that occur in an intense optical pulse which 
travels through an optical fiber. The intensity-dependent refractive index results in the pulse to 
modulate its own optical phase according to its intensity profile. Such effect is qualitatively shown in 
figure 3.2. Consider an electric field E1 propagating through an optical fiber. Because of the Kerr 
effect, the pulse will create a refractive index variation, being the greatest at the maximum of the pulse 
intensity profile. This means that a nonlinear phase shift FNL varies across the pulse. Therefore, 
compared to the tails, the peak of the pulse suffers from a larger nonlinear phase shift. This varying 
phase shift across the pulse can also be seen as a frequency chirp (the instantaneous frequency is the 
derivative of the phase with respect to time) that leads to spectral broadening. Thus red-shifted 
(Stokes) and blue-shifted (anti-Stokes) frequencies symmetrically appear in the leading and the 
trailing edges of the optical pulse, respectively. The beating of these new frequencies will produce 
some interference fringes in the pulse spectrum. The number of fringes N is proportional to the 
nonlinear phase shift by Np. This behavior is illustrated in Figure 3.3 that shows the SPM-induced 
spectral broadening of a high-peak power picosecond pulse propagating in a short SMF. 
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Figure 2 : Qualitative illustration of the effects of self-phase modulation and modulation instability. 
 
We can easily quantify this spectral broadening using equation (14) (lossless NLSE) if we assume no 
dispersion in the fiber (b2=0). The output amplitude reads as: 
  

 
The instantaneous frequency change imposed on a Gaussian pulse  would 

be: 

By taking into account optical loss in the fiber, L should be replaced by Leff. As we can see in figure 
3.2, there is a linear frequency variation at the centre of a Gaussian pulse. This variation (called chirp 
in the linear case) is positive C=2gP0L. When a positively chirped pulse is introduced in a fiber with 
negative b2, one can obtain a compression of the pulse width. This is the basis of SPM-based pulse 
compressors.  

 
Figure 3 : Self-phase modulation-induced spectral broadening of a picosecond pulse propagating 
in a short single-mode optical fiber. The figure is obtained from a numerical simulations of Eq. 

(14) with the following parameters: L=5m, g=50W-1km-1, P=12 W, τ0=30ps, and b2=0. 
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Cross-phase modulation (XPM) results from the phase changes of an optical wave induced by a 
second optical wave with different wavelength or polarization, or propagating in different modes of a 
multimode fiber. In this case, the nonlinear phase shift depends on the polarization states of the two 
interacting waves. The shiftis two thirds smaller than SPM for an orthogonal polarization and twice 
larger than SPM for the same linear polarization and different wavelengths (or modes). The orthogonal 
polarization case, which is called degenerate XPM, occurs in birefringent optical fiber. It is 
schematically sketched in Figure 3.4 with an incoming pulse polarized at 45° of the fiber birefringent 
axes. The input pulse will split into a fast and a slow component. Therefore, XPM leads to pulse 
frequency chirp and group-velocity mismatch between the fast and slow components propagating in 
a birefringent fiber. 
 
 

 
 

Figure 4 : Principle of degenerate cross-phase modulation in a birefringent optical fiber. 
 
3.2 An application of SPM and XPM: The Nonlinear Optical Loop Mirror (NOLM) 
 
A very interesting device that can advantageously exploit the effects of SPM and XPM is the 
Nonlinear Optical Loop Mirror (NOLM) [5][11]. In its simplest configuration, the NOLM is based 
on a Sagnac fiber loop in which an attenuator is placed at the end of a loop. Thus the attenuator 
introduces a power imbalance between the clock-wise and counter-clockwise propagating fields in 
the loop. In linear operation, the Sagnac mirror acts as a perfect mirror. The input pulse is split by a 
directional coupler into two counter-propagating electric fields, as shown in Figure 3.5. After a 
propagation through the loop the two fields are re-combined at the coupler. Since they travel through 
the same path with the opposite direction, the optical path length is identical to both the counter-
propagating fields, producing the same linear phase shifts. As a result, the input pulse is totally 
reflected into the input port. Therefore, for low input powers the loop acts as a perfect mirror, and no 
light exits to the output port. A polarization controller is used in the loop to optimize the interference 
and ensure a total reflection of the light at low powers. In the high power regime, however, the 
refractive index of the fiber is modified by the light intensity. This means that the imbalance of the 
optical powers in the two arms caused by the attenuator leads to a difference of the effective optical 
path lengths for the clockwise and counter-clockwise pulses.  

 
Figure 5 : The Nonlinear Optical Loop Mirror as pulse compressor. 
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The transmission coefficient T of this device can be written as a function of the phase difference 
between the two arms:  

where  

P0 being the input power. Thus, the system behaves like a saturable absorber: the transmission grows 
for higher input powers, with a quadratic dependence on the power for small accumulated nonlinear 
phase shifts. Since the power in the peak of the pulse is larger than in the wings, the output pulse is 
sharper than that at the input, resulting in pulse compression[12]. One negative aspect of the NOLM 
is that the phase of the output pulse is also altered by SPM. Therefore, the device induces a chirp in 
the signal. The chirp can be reduced by adding an anomalously dispersive fiber onto the output of the 
NOLM.  
 
Some more interesting features arise when two beams are combined in the Sagnac loop. In this case, 
one can use the effect of XPM to provide the nonlinear phase shifts required to imbalance the 
interferometer. With this configuration, some interesting all-optical functions can be achieved such 
as wavelength conversion, ultra-high speed de-multiplexing [13], rapid all-optical switching [14]. 
 
4. Optical Solitons 
 
A fundamental optical soliton is a wave-packet or pulse that preserves its shape during the 
propagation, being unaffected by dispersion and nonlinearities [16]. Qualitatively speaking, 
fundamental solitons can simply be understood as an equilibrium between pulse sharpening that 
occurs in the anomalous dispersion regime through SPM and pulse spread that occurs due to 
anomalous dispersion in a fiber [16]. A soliton is obtained just by the adequate balance between Kerr 
effect and dispersion, which enables essentially no distortion on the pulse (in other words, the 
distortions mutually compensate). 
 
Scalar solitons appear only when the fiber exhibits anomalous dispersion. In this case, fundamental 
solitons are the only stationary solutions of the NLSE. This is, solitons are the unique transmission 
format that allows transmission without distortion. The existence of soliton solutions of the NLSE can 
be easily verified by inserting the following solution into the NLSE: 
 

 
Thus, fundamental solitons have the shape of a hyperbolic secant. Fundamental solitons are obtained 
only when the following condition is satisfied: 
 

 
where T0 stands for the temporal width of the pulse. It is expected from the equation that a strict 
balance is required between peak power, duration of the soliton and dispersion in fiber to achieve such 
un-distorted transmission. It must be mentioned that breathing or periodic solutions can be obtained 
for integer N >1. These solutions are known as higher-order solitons. For instance, Figure 3.6 shows 
a third–order periodic soliton propagating in a 2-km single-mode optical fiber. In particular it is clearly 
seen that the dynamic solutions show pulse collapse, splitting and then soliton recovery in the fiber. 
These solutions are however unstable because of higher-order dispersion and Raman effects. For this 
reason, they tend to split into several fundamental solitons during the propagation and to shed energy 
in the form of frequency-shifted dispersive waves [17]. This is the basis of supercontinuum generation 
[18]. 
 
Solitons were first demonstrated in 1980 in an experiment in Bell Labs [19]. Since then, they have 
been widely demonstrated for a robust transmission format in many areas. In an experiment in 1989, 
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solitons were propagated without significant degradation over more than 10,000 km with periodic 
amplification [20]. One of the interesting properties of solitons is that they tend to adapt their 
parameters through the propagation so as to satisfy the soliton condition given by equation (20). If 
one of the parameters is modified (for instance, the dispersion of the fiber), the soliton will adapt the 
rest of the parameters to keep N=1. This is the basis of adiabatic soliton compression in dispersion 
decreasing fibers [21]: as the fiber dispersion decreases along the fiber, the soliton width T0 decreases 
as well to keep N=1. 
 

 
 

Figure 6. Third-order soliton (N=3) propagating in a 2 km-long single-mode fiber obtained from a 
numerical simulation of Eq. (14) with the following parameters : L=2 km, g=2 W-1km-1, P=250 mW, 
τ0=10ps and b2=-9 ps2/km. 

 
5. Modulation instability (MI) 
 
As in the case of solitons, modulation instability (MI) is a non-linear phenomenon that has been 
observed in several branches of physics such as plasma physics, hydrodynamics, or matter waves 
[22]. In optics, it occurs when the steady-state of an electromagnetic field becomes unstable due to an 
interplay between anomalous dispersion and nonlinearity in a medium. MI is initiated by SPM and 
manifests as the break-up of a continuous field into a train of ultra-short pulses. As the typical MI 
oscillation frequency νMI is of the order of 0.1 to 1 THz, pulses with temporal duration τ >> 1/νMI can 
be considered quasi-cw respect to this instability, that is, pulses usually longer than 10 ps. In the 
frequency domain, it gives rise to two sidebands (Stokes and anti-Stokes) around the center frequency 
of a quasi-monochromatic cw field. Together with four-wave mixing, this process leads to the 
generation of many equally-spaced frequency components. These latter ones interfere each other in a 
similar way to that in a mode-locked laser and produces a pulse train. Modulation instability plays a 
fundamental role in supercontinuum generation with cw pumping.  
 
Modulation instability can also be qualitatively understood from Figure 3.2. We consider a quasi-cw 
electric field E1 propagating through an optical fiber. This field induces a small intensity perturbation. 
Because of Kerr effect, this intensity perturbation will create a refractive index variation, being the 
largest at the point of maximum intensity of the field. Therefore, a varying nonlinear phase shift FNL 
affects the signal and the peak of the perturbation suffers from a nonlinear phase shift larger than that 
in the valleys. As in the previous case, this varying phase shift across the pulse can also be considered 
as a frequency chirp. The leading edge of the perturbation is shifted towards the blue and the trailing 
edge towards the red. Now the key point is to consider what happens in the different dispersion 
regimes. When the dispersion is normal (b2>0, D<0), the red shifted components travel more slowly 
than the blue ones. In result the trailing edge lags compared to the leading edge and the intensity 
perturbation profile spreads out. On the other hand, when the dispersion is anomalous (b2<0, D>0), 
the trailing edge travels faster than the leading edge, thus it allows sharpening of the intensity 
perturbation profile. As the profile becomes sharper, the whole process can be reinforced, thus leading 
to an exponential amplification of the perturbation. 
 
The process can be described mathematically by a stability analysis of a CW solution of the NLSE. 
That results in creating gain bands at both side of the pump frequency, the gain coefficient being : 



 

 
where W=w-w0	is the frequency detuning between the pump and the frequency component analyzed. 
A simple analysis of this gain curve reveals two maxima at a detuned frequency: 
 

 
This frequency can be interpreted as follows: as we have briefly described at the beginning of this 
section, the effect of MI causes a spontaneous break-up of an intense cw light into a pulse train. The 
most amplified spectral components are those oscillating at frequency Wmax. This leads to two 
symmetric sidebands at frequency ω0 ± Wmax (anti-Stokes and Stokes) in the frequency domain. In the 
time domain, it generates a pulse train with period TM = 2π/Wmax. Wmax is thus the repetition rate of 
the generated pulse train, as shown in Figure 3.7. MI can also be stimulated with an optical seed at 
the fiber input whose frequency matches the modulation frequency. In this case, it refers to induced 
MI whereas in the absence it is spontaneous MI. We will see in section 3.7 how induced MI involves 
in optical parametric amplification. 
 

 
 
Figure 7 : Modulation instability of a noisy continuous field and a soliton-like pulse train generated 
in a single-mode optical fiber, obtained from a numerical simulation of Eq. (14) with the following 
parameters: L=3km, g=2W-1km-1, P=500 mW and b2=-9 ps2/km. 
 
 
6. Four-wave mixing (FWM) 
 
6.1 Origin of four-wave mixing 
 
Third-order nonlinearities allow generation of new frequency components when two or more waves 
with different frequencies exist in a fiber [24]. This effect is generally known as four-wave mixing 
(FWM) phenomena. In order to understand the origin of new frequencies, the interested reader is 
invited to insert two fields at different frequencies (w1 and w2) in the expression of the polarization 
density (equation (3)) and check the frequencies of the resulting terms. In addition to third-harmonic, 
self-phase and cross-phase modulation terms, new terms at frequencies 2w1±w2 and 2w2±w1 appear. 
Conventionally, frequencies w1 and w2 are close, so the terms with 2w1-w2 and 2w2-w1 will fall close 
to the frequencies of two input waves whilst the terms with other frequencies will fall very far from 
those of the two waves. It is expected from phase matching conditions (see below) that the terms with 
far frequencies tend to vanish, while the terms with close frequencies (which satisfy phase matching 
relations) grow over the fiber distance. 
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Figure 8: Left: Qualitative explanation of the effect of four-wave mixing. Right: Spectrum of a simple 
FWM experiment performed in a dispersion-shifted fiber. 
 
A qualitative explanation of the effect of FWM can be seen in figure 3.8. Two beams E1 and E2 
combine in the optical fiber. The interference between the two creates a beating intensity pattern at a 
frequency of w1-w2. This intensity pattern will induce a refractive index grating in the fiber, which 
will, in turn, introduce a small phase modulation on both fields E1 and E2. Practically, a small phase 
modulation on E1 will give rise to two sidebands at both sides of w1, thus creating small contributions 
to w2 and 2w1-w2. The similar process will apply to E2, hence creating contributions to w1 and 2w2-w1.  
 
6.2 Phase-matching 
 
The above description holds well for short fibers. In order to consider the effect in long fibers, one 
should consider the sum of all the FWM contributions generated in many short fibers. The main 
intuitive conclusion is that the growth of the mixing product along the fiber will depend whether the 
contributions from all the short fibers add in phase or not. For optimum conversion efficiency, all the 
contributions from all the short fibers needs to be added in phase. This leads to the condition that the 
phase mismatch between the generated FWM contribution and the propagating wave at the FWM 
frequency should be zero. If we consider the FWM product at ws=2w1-w2, the phase mismatch will 
be: 
 

	called the phase matching condition. Phase matching conditions appear in many nonlis appear in 
many nonlinear optical processes. The nonlinear processes that depend on phase matching condition 
are called phase-sensitive processes. Examples of other phase-sensitive processes are frequency 
doubling, sum and difference frequency generation, and parametric amplification and oscillation. 
 
We can get some more insight on the implications of this phase matching condition by using the 
Taylor series expansion of the propagation constant Eq. (13) around w1. The result is: 
 

 
Considering the small value of the fourth-order term, the only possibility to satisfy phase-matching 
condition is to work in the zero-dispersion wavelength region of the fiber (b2=0) [25]. 
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7 Optical Parametric Amplification (OPA) 
 
7.1 Principle of parametric amplification 
 
The underlying nonlinear process for parametric amplification is the optical Kerr effect which causes 
a refractive index variation proportional to the local intensity of light [26][27][28]. When a high-
power pump wave and a frequency-detuned small signal wave travel together in an optical fiber, they 
produce interference beats and modulate the refractive index via the Kerr effect, leading to the 
generation of a light-induced moving index grating. This phenomenological approach is schematically 
sketched in Figure 3.9. In such a scheme, parametric amplification can be seen in the time domain as 
an energy transfer from the pump to both the signal and idler waves by a diffraction-like process on 
the refractive index grating. In the frequency domain, parametric amplification can be viewed as a 
four-wave mixing (FWM) process, as previously described in section 3.6, where the pump and the 
signal are both present at the fiber's input. When phase matching is fulfilled, exponential-like 
amplification of the signal together with generation of an idler wave is possible. The phase matching 
condition and the parametric gain are linked to the index grating period and the grating contrast, 
respectively. From a physical point of view, OPA is formally equivalent to the induced MI process 
described in section 3.5 since the incoming continuous pump wave breaks up into high-contrast 
amplitude modulations in the form of ultra-short optical pulses, as shown in Figures 3.7 and 3.9. MI 
is studied in the time domain whereas OPA is commonly investigated in the Fourier domain. Both 
terms are now recognized and used in the literature. However, MI and OPA do not manifest 
themselves in exactly the same situations. OPA occurs for moderate values of the nonlinear phase 
shift gPL whereas spontaneous MI requires higher values of gPL to be clearly observed. 
 
 

 
 

Figure 9 Principle of parametric amplification in optical fiber through the optical Kerr effect. 
 
When there is no input signal, OPA can be considered as the effect of amplifying vacuum or quantum 
noise. The resulting parametric amplified spontaneous emission (ASE) is considered as a detrimental 
noise source for optical amplification. It can however be reduced when fiber OPA functions in a 
phase-sensitive configuration, i.e., when the three waves including the idler propagate in a controlled 
relative phase [26]. 
 
7.2 Parametric gain and bandwidth 
 
As mentioned in section 3.6, phase-matching in the third telecommunication band at 1.55 µm is 
generally achieved near the zero-dispersion wavelength of dispersion-shifted fibers (DSF) to provide 
broadband operation and high gain at telecommunication wavelengths. The parametric gain of the 
signal is then given by the following expression [26]: 
 

where  is the parametric gain factor per unit length and  is the 
phase mismatch that combines the dispersion-induced linear phase shift  expressed in Eq. (23) 
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with the nonlinear phase shift due to XPM. Note that the parametric gain factor g can be 
mathematically linked to the MI gain given in Eq. (18). Equation (24) shows that the parametric gain 
band can be easily tailored by dispersion management, especially by tuning the second and fourth-
order dispersion coefficients of DSFs. Figure 3.10 shows a typical example of a flat parametric gain 
band of up to 100 nm that can be generated in a dispersion-tailored fiber arrangement. 

 
7.3 Applications of Fiber OPA 
 
Fiber-optic parametric amplifiers (FOPAs) and wavelength converters show a number of 
characteristics attractive to all-optical signal processing and ultra-high bit rate communication 
systems [28]. Their advantages over rare-earth-doped (Erbium) fiber amplifiers include a broad gain 
bandwidth and access to arbitrary wavelength ranges (by tailoring the fiber dispersion). They 
additionally offer the possibilities to achieve wavelength conversion and, as recently demonstrated, 
many other applications such as ultrafast all-optical signal sampling, limiting, buffering, high-
repetition-rate pulse train generation, or time-division multiplexing [26][28]. In addition to broadband 
operation and high gain, FOPAs also provide low noise figures, equivalent to those of conventional 
optical fiber amplifiers or even better when they operate in a phase-sensitive configuration. First 
attempts were made in the 70's in the visible spectral region by use of birefringent or multimode fibers 
[23], and later in the 1.3 µm window with SMF [29]. Nowadays, most FOPAs are being developed in 
the 1.55 µm band to meet the requirements of the telecommunication industry [24]. 
 

 
 
Figure 10 : Broadband and flat parametric gain versus pump-signal wavelength detuning in a 
dispersion-tailored four fiber arrangement obtained from a numerical simulation of Eq. (14) at P= 500 
mW. 
 
As many other nonlinear effects, Fiber OPA is strongly polarization-dependent. Therefore, the input 
state of polarization (SOP) of the signal must be parallel to that of the pump. The polarization 
dependence of the parametric gain can however be significantly reduced by using techniques such as 
polarization diversity or cross-polarized pump waves [26]. 
 
8. Stimulated Raman scattering (SRS) 
 
8.1 Principle of Raman scattering 
 
The principle of Raman scattering is schematically described in Fig. 3.11. This third-order nonlinear 
effect is an inelastic scattering process, where an incoming photon of energy hni interacts with a 
coherently-excited state of the system Ev, that is, the vibrational modes of a silica (SiO2) molecule. 
As a result of this light-matter interaction, a frequency down-converted photon hns is emitted. The 
incident photons are annihilated to create a lower energy Stokes photon.  Different to acoustic 
phonons, an optical phonon vibrating in the THz range involved in stimulated Brillouin scattering 
(SBS). Up-converted (anti-Stokes) photons may also be emitted if the excited state is sufficiently 
populated. The Raman effect was discovered by C. V. Raman in 1928 in liquids, for which he received 



the Nobel Prize in Physics in 1930 [30]. What he observed was the spontaneous Raman scattering, in 
which an infinitesimal fraction (less than 10-6) of the input energy is converted to the scattered light 
[31]. This effect does not provide optical amplification. However, if the incident laser beam is 
sufficiently intense, the photon-phonon scattering process becomes self-stimulated. The temporal 
beating between the pump and Stokes waves stimulates the vibrational states of silica molecules, and 
the wave grows rapidly as more and more pump energy is transferred to it. In the stimulated regime, 
the growth of the Stokes signal is exponential and much more efficient than in the anti-Stokes 
scattering which requires phonon population.  
 

 
  

Figure 11 Principle of inelastic Raman scattering of light. 
 

 

 
 

Figure  12 : Raman susceptibility in fused silica versus frequency detuning between pump and 
Stokes waves. Solid line: imaginary part. Dashed line: real part. 

 
 
The Raman susceptibility , which is plotted in Figure 3.12, is the Fourier transform of the 

delayed Raman response R(t) of Eq. (15) [32]. It exhibits a real part (dashed) and an imaginary part 
(solid curve) that are the Raman contribution to the Kerr effect and the Raman gain, respectively. This 
results from the Kramers-Kronig relations due to causality. This implies that the real part is a 
symmetric function whereas the imaginary part is anti-symmetric, with gain on the Stokes side and 
loss on the anti-Stokes side. Thus, in the stimulated regime, the anti-Stokes wave is absorbed by the 
pump through Raman scattering. In optical fibers, however, Raman anti-Stokes wave is often emitted 
via four wave-mixing [32]. The Raman frequency shift in fused silica is WR/2p=13.2 THz (440 cm-1), 
which corresponds to the inverse of the fast response time of molecular vibrations (tR=75 fs) [34].  
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In the continuous-wave pumping regime, the nonlinear interaction between the pump and signal is 
governed by the following set of coupled power equations [4] : 
 

where aP and aS are the absorption coefficients that are related to fiber loss at the pump and signal 
wavelengths. Equation (24) is readily solved if we neglect the first term of the right-hand side that 
accounts pump depletion. By substituting the solution in the second equation (25), we can easily solve 
the signal power at the amplifier’s output: 
 
 

 
with PS(0) and PP, the input signal and pump power, respectively. Aeff is the fiber effective core area 
defined in Equation (7). gR is the Raman gain coefficient which is typically of the order of 10-13 m/W 
in pure silica fiber. Leff is the effective fiber length defined in equation (9). 
 
Another important parameter to know is the Raman threshold or critical power. It is defined as the 
power for which the Stokes power generated from noise becomes equal to the pump power [4]: 
 

 
Note that the Raman gain efficiency gR/Aeff can be significantly enhanced or frequency shifted by use 
of dopants inside the fiber core [35]. For instance, in fibers highly doped with germanium, the Raman 
gain can be seven times greater than that in SMFs. Two factors contribute to enhance the Raman gain 
in these fibers: first, the relatively high GeO2 doping provides a larger Raman gain coefficient; second, 
the effective area can be made very small in these fibers, leading to higher power confinement and 
therefore larger gains. These fibers are often used in Raman amplifiers and lasers. In addition, 
phospho-silicate (P2O5) glass has two scattering bands shifted from 19.5 THz (650 cm-1) and 39 THz 
(1300 cm-1). 
 
8.2 Raman amplifiers for telecommunications 
 
Because of the amorphous nature of fused silica and the short phonon lifetime (tL=150 fs), optical 
fibers are used in a broadband gain process via Raman effect as shown in Figure 3.12. This wide gain 
bandwidth is very advantageous to make Raman fiber amplifiers (RFA) and Raman fiber lasers (RFL) 
[35]. For a pump at 1450 nm, the gain band provides maximum gain at 1550nm over a range of 40 
nm as shown in figure 3.13. 
Moreover, it is possible to generate a flat and wide gain bandwidth by injecting multiple pumps in a 
single optical fiber as shown in figure 3.14. Time-division multiplexing of pump wavelengths is often 
required to suppress energy transfer between the pumps in such a configuration. A wide gain 
bandwidth as shown in the figure has recently enabled to transmit data beyond 10 Tbit/s transfer rate 
over longer than 10000 km of fiber [33].  
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Figure 13 : Raman gain bandwidth at telecommunication wavelengths (S, C and L bands). 
 
 

 
 

Figure 14 : Principle of multi-wavelength pumping for flat and broadband Raman amplification at 
telecommunication wavelengths (C and L bands). 

 
Note also that Raman fiber amplification, like fiber OPA, is strongly polarization-dependent. The 
Raman gain coefficient of a signal with polarisation parallel to the pump is indeed 30 times higher 
than that of an orthogonally polarized one. However, by using cross-polarized pumps or pump 
polarization diversity, Raman gain independent on the polarization state of incident signal can be 
obtained. 
 
8.2 Cascaded Raman generation 
 
Cascaded Raman generation can be understood as an iteration of fundamental stimulated Raman 
scattering (SRS) processes. Stokes wave generated in each iteration acts as a pump to produce another 
Stokes wave with a different frequency. Cascaded SRS thus produces multiple additional lines or 
secondary radiations in the spectrum of light scattered in the optical fiber. As an example, Figure 3.14 
shows cascaded Raman generation using a high-peak power 532-nm (green) nanosecond microchip 
laser and a 20-m long single-mode polarization maintaining fiber. Seven Raman orders can be seen 
from the green to the red as shown in the figure. Note that, in optical fibers, higher-order Stokes waves 
can often be obtained by four-wave mixing.  
 



 
 
Figure 14 : The image shows cascaded Raman scattering by launching a 532-nm (green) 
nanosecond microchip laser into a 20m long single-mode polarization maintaining fiber. More than 
seven Raman orders can be observed from the green (input laser wavelength) to the red. 
 
8.3 Raman Fiber Laser (RFL) 
 
Optical fiber waveguides have been early recognized as an ideal medium to achieve cascaded Raman 
wavelength conversion for a purpose in generating new laser wavelengths and developing wide-band 
optical amplifiers. GeO2 and P2O5 doped fibers are used extensively to construct Raman fiber lasers 
(RFLs), which can cover the whole spectral range from 1.2 µm to 2 µm [5]. The great advantage of 
RFLs over other high-power sources (doped fiber, semiconductor lasers, etc) is that cascaded Raman 
order generation efficiently allows access to spectral ranges previously unattainable with other 
technologies. As shown in Figure 3.15, RFL is an all-fiber nested Fabry-Perot resonator with a highly-
doped fiber as a Raman gain medium and fiber Bragg grating (FBG) reflectors. In such a resonator, a 
high-power Ytterbium continuous pump wave near 1100 nm is converted into a single or multiple 
high-power waves in the 1200–1600 nm range through cascaded Raman generation. Typically, RFLs 
emit CW and deliver medium power (1 to 50 W). They are used as a convenient laser source for 
pumping optical fiber amplifiers and some lasers. 
 

 
 

Figure 3.15 : Top : Setup of a dual-order cascaded Raman fiber laser made with a phosphosilicate 
fiber as Raman gain medium and five nested fiber Bragg gratings (FBGs) as reflectors. Bottom: RFL 
spectrum. 
 



 
9. Conclusion 
 
In this course, we have described the basics of all the nonlinear optical effects that occur when high-
intensity electromagnetic fields propagate in optical fibers. As nonlinear fiber optics is a very 
attractive research field, it has been covered in many previous reviews and books. The readers are 
particularly recommended to refer to references [4] and [5] that combine both theory and experiments. 
Other books and references cited in the bibliography contain valuable material and handy references. 
 
10. Bibliography 
 
[1] N. Bloembergen, “Nonlinear optics: past, present and future,” IEEE J Sel. Top. Quant., vol. 6, 

no. 6, pp. 876–880, 2000. 

[2] R. W. Boyd, “Nonlinear optics,” Academic Press, third edition, 2008. 

[3] P. Mitra and J. Stark, “Nonlinear limits to the information capacity of optical fiberfiber 
communications”, Nature, vol. 411, pp. 1027-1030, 2001. 

[4] G. P. Agrawal “Nonlinear Fiber Optics,” Academic Press, fourth edition, 2007. 

[5] G. P. Agrawal, “Applications of Nonlinear Fiber Optics,” Academic Press, Second edition, 2009.  

[6] R. R. Alfano, “The supercontinuum laser source,” Springer, 2006. 

[7] D. A. Kleinman, “Nonlinear dielectric polarisation in optical media,” Phys. Rev. 126, 1977-1979 
(1962).  

[8] P. V. Mamyshev and S. V. Chernikov, “Ultrashort pulse propagation in optical fibers,” Opt. Lett. 
15, 1076-1078 (1990). 

[9] F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett. 19, 1097-
1100 (1967). 

[10] R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 4, 
1448–1453 (1978). 

[11] N. J. Doran and D. Wood, “Nonlinear optical loop mirror,” Opt. Lett. 13, pp. 56-58, 1988. 

[12] S. Boscolo, S. K. Turitsyn, and V. K. Mezentsev, “Performance comparison of 2R and 3R optical 
regeneration schemes at 40 Gb/s for application to all-optical networks,” J. Lightwave Technol. 
23, 304–309 (2005). 

[13] H. Sotobayashi, C. Sawaguchi, Y. Koyamada, and W. Chujo, ”Ultrafast walk-off-free nonlinear 
optical loop mirror by a simplified configuration for 320-Gbit s time-division multiplexing 
signal demultiplexing,” Opt. Lett. 27, 1555–1557 (2002). 

[14] J. D. Moores, K. Bergman, H. A. Haus, and E. P. Ippen, “Optical switching using fiber ring 
reflectors,” J. Opt. Soc. Am. B 8, 594–601 (1991). 

[15] G. P. Agrawal and Y. S. Kivshar, “Optical Solitons: From Fibers to Photonic Crystals,” 
Academic press (2003). 

[16] A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive 
dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett., vol. 23, no. 3, 142–144, (1973). 

[17] P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, 
and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron., 
vol. 23, pp. 1938–1946, (1987). 



[18] J. M. Dudley, G. Genty and S. Coen, “Supercontinuum generation in photonic crystal fiber,” 
Rev. Mod. Phys. Vol. 78, 1135–1184 (2006). 

[19] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse 
narrowing and solitons in optical fibers,” Phys. Rev. Lett., vol. 45, no. 13, 1095–1098 (1980). 

[20] L. F. Mollenauer, M. J. Neubelt, J. S. G. Evangelides, J. P. Gordon, J. R. Simpson, and L. G. 
Cohen, Experimental study of soliton transmission over more than 10,000 km in dispersion-
shifted fiber, Opt. Lett., vol. 15, 1203-1205 (1989). 

[21] K. Smith and L. F. Mollenauer, “Experimental observation of adiabatic compression and 
expansion of soliton pulses over long fiber paths,” Opt. Lett., vol. 14, no. 14, 751–753 (1989). 

[22] A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulation 
instability,” IEEE J. Quantum Electron. 16, 694-697 (1980). 

[23] R. H. Stolen, “Phase-matched stimulated four-photon mixing in silica-fiber waveguides,” IEEE. 
J. Quantum Electron. Vol. 11, 100-103 (1975). 

[24] K. Hill, D. Johnson, B. Kawasaki, and R. MacDonald, “CW three-wave mixing in single-mode 
optical fibers,” J. Applied Physics, vol. 49, 5098-5106 (1978). 

[25] K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region”, IEEE 
J. of Lightwave Technol., vol. 10, pp. 1553-1562 (1992). 

[26] M. E. Marhic, “Fiber Optical Parametric Amplifiers, Oscillators and Related Devices,” 
Cambridge University Press, Cambridge (2007). 

[27] R. Stolen and J. Bjorkholm, “Parametric amplification and frequency conversion in optical 
fibers,” IEEE J. Quant. Electron. 18, 1062–1072 (1982). 

[28] J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P.-O. Hedekvist, “Fiber-based optical 
parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron. Vol. 8, 506–
520 (2002). 

[29] J. P. Pocholle, J. Raffy, M. Papuchon, and E. Desurvire, “Raman and four-photon mixing 
amplification in single mode fibers,” Opt. Eng. 24, 600-608 (1985). 

[30] C.V Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 1121, 501 (1928). 

[31] R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quant. Electr. 
5, 1-68, (1977). 

[32] R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett., vol. 
22, no. 6, 276–278 (1973). 

[33] N. Bloembergen and Y. R. Shen, “Theory of stimulated Brillouin and Raman scattering,” Phys. 
Rev. 137, 6A, 1787–1805 (1965). 

[34] R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of 
silica-core fibers,” J. Opt. Soc. Am. B vol. 6, 1159–1166 (1989). 

[35] M. N. Islam, “Raman Amplifiers for telecommunications 1: Physical Principles,” Springer, 
(2004). 


